gms | German Medical Science

55. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie e. V. (DGNC)
1. Joint Meeting mit der Ungarischen Gesellschaft für Neurochirurgie

Deutsche Gesellschaft für Neurochirurgie (DGNC) e. V.

25. bis 28.04.2004, Köln

Intraoperative computer-animated real-time visualization of vertebral body motion using a microsensor system implanted in the cervical spine

Intraoperative computeranimierte Echtzeitdarstellung von Wirbelkörperbewegungen mit Hilfe eines implantierbaren Mikro-Sensor-Systems bei neurochirurgischen Eingriffen an der degenerativ veränderten Halswirbelsäule

Meeting Abstract

  • corresponding author Olaf Süss - Neurochirurgische Klinik, Charite-Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Berlin
  • S. Schoenherr - Institut für Informatik, Freie Universität Berlin, Berlin
  • S. Mularski - Neurochirurgische Klinik, Charite-Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Berlin
  • B. Kühn - Neurochirurgische Klinik, Charite-Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Berlin
  • S. Süss - Neurochirurgische Klinik, Charite-Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Berlin
  • T. Kombos - Neurochirurgische Klinik, Charite-Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Berlin
  • M. Brock - Neurochirurgische Klinik, Charite-Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Berlin

Deutsche Gesellschaft für Neurochirurgie. Ungarische Gesellschaft für Neurochirurgie. 55. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie e.V. (DGNC), 1. Joint Meeting mit der Ungarischen Gesellschaft für Neurochirurgie. Köln, 25.-28.04.2004. Düsseldorf, Köln: German Medical Science; 2004. DocMO.13.02

The electronic version of this article is the complete one and can be found online at: http://www.egms.de/en/meetings/dgnc2004/04dgnc0126.shtml

Published: April 23, 2004

© 2004 Süss et al.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share – to copy, distribute and transmit the work, provided the original author and source are credited.


Outline

Text

Objective

Degenerative diseases alter the biomechanical function and statics of the cervical spine. The aim of the surgery is not only to decompress the compressed neural structures but also to guarantee the highest stability with the best possible preservation of function. Regardless of the surgical technique used, the objective here is to be able to intraoperatively predict the functional (neurological and biomechanical) results of surgery.

Methods

In addition to specific surgical planning, optimization of anatomical orientation and improvement of surgical accuracy, so-called "navigation" has also been used for some time in cervical spinal interventions. In this research project, the reference sensors of an electromagnetic navigation system have been reduced to such an extent that they can be implanted in one or more vertebral bodies. Microsensors were implanted in up to three segments in a model and up to two segments in the first clinical trials.

Results

Various surgical techniques (ventral fusion, dorsal fixateur implantation, ventrolateral plate osteosynthesis, foramenotomy, cage implantation) were performed in a total of five cervical spine models using different segments (C1-3, C5/6, C6-T1). The isolated vertebral body movements were intraoperatively registered and visualized. First examinations were performed in vivo during ventral C4/5 and C5/6 fusions.

Conclusions

The implanted reference sensors enable computer-animated, real-time visualization of isolated movements in individual vertebral bodies or entire motion segments like intraoperative changes in vertebral body positioning. This means that motion can be immediately visualized during surgery without the need for additional intraoperative imaging procedures such as intraoperative fluoroscopy or computed tomography. Especially in the case of degenerative changes, important information about the expected postoperative biomechanical result can be obtained by continuous intraoperative three-dimensional animation of joint and vertebral body motion.