Interaction between otorhinolaryngology and orthodontics: correlation between the nasopharyngeal airway and the craniofacial complex

Abstract

In terms of pathophysiology, an anatomically narrow airway is a predisposing factor for obstruction of the upper respiratory tract. The correlation between the nasopharyngeal airway and the craniofacial structures is discussed in this context. Thus a mutual interaction between the pharynx and the mandibular position was demonstrated, whereby the transverse dimension of the nasopharynx was significantly larger in patients with prognathism than in patients with retrognathism. The influence of chronic obstruction of the nasal airway on craniofacial development was also discussed. The form-and-function interaction, which ought to explain the causal relationship between nasal obstruction and craniofacial growth, appears to be of a multifactorial rather than a one-dimensional, linear nature. It is not disputed, however, that expanding the maxilla improves not only nasal volume and nasal flow, but also the subjective sensation of patients, although it is not possible to make a prognostic statement about the extent of this improvement because of the differing reactions of individuals. Orthodontic appliances for advancing the mandible can also be successfully used in the treatment of mild obstructive sleep apnea syndrome. This treatment method should be considered particularly for patients who are unwilling to undergo or cannot tolerate CPAP (continuous positive airway pressure) treatment.

Keywords: craniofacial development, nasopharyngeal airway, adenoids, rapid maxillary expansion (RME), obstructive sleep apnea syndrome (OSAS), mandibular advancement device (MAD)

1 Introduction

As well as hypertrophic adenoids and tonsils, chronic and allergic rhinitis, environmental irritants, infections, congenital nasal deformities, nasal trauma, polyps and tumors, another predisposing factor for obstruction of the upper respiratory tracts can be an excessively narrow airway. In this respect, reference is made in the literature to the importance of jaw malpositions and jaw anomalies, to changes in airway morphology and respiratory problems [1], [2]. In the opposite direction, the influence of an obstruction of the airways on development of the stomatognathic system was postulated and the theory of the functional matrix was put forward, which describes the influence of the surrounding structures on dentofacial development [3].

2 Correlation between nasopharyngeal cavity and craniofacial structures

Owing to the close relationship between the pharynx and the dentofacial structures, a mutual interaction has long been assumed and studies on the subject have been performed [4], [5]. However, the results of these studies were based on two-dimensional measurements of the airway. In a study by Alves et al. [6] published in 2008, the upper airway in patients with retrognathism (syn. distoclusion, mandibular retraction) or prognathism (syn. mesioclusion, mandibular protrusion) with physiological breathing was measured three-dimensionally for the first time with computed tomograms. The results showed that the majority of measurements of the airway were not influenced by the type of malocclusion. However, there were significant differences between patients with retrognathism and prognathism in respect of the transverse dimension of the nasopharynx. This was significantly decreased in patients with distoclusion. Furthermore, there
were gender-specific differences. For instance, the retro-
glossal width and height of the posterior nasal cavity were
larger in male patients with distoclusion than in the fe-
males, while the retropalatal and retroglossal volumes were
more extensive in male patients with mesioclusion.
The results of this study, however, did not rule out the
relevance of an airway obstruction on facial growth and
vice versa. While Freitas et al. [7] in their 2D study found
no correlation between obstructions of the upper airway
and the frequency of malocclusions, Jospeh et al. [8] as-
sumed that skeletal factors, such as a retrognathic max-
ila, can lead to narrowing of the anteroposterior dimen-
sions of the airway. Furthermore the study showed that
hyperdivergent (syn. vertical, dolichofacial) growth of the
facial cranium or excessively vertical growth of the maxilla
can result in narrowing of the anteroposterior dimensions
of the airway. These measurements were not considered
in the above-mentioned 3D study.
An important role in securing the pharyngeal airway is
also attributed to the hyoid and its musculature. Various
studies have demonstrated that changes in the hyoid
position can result in changes to the mandibular position.
For instance Battagel et al. [9] reported that in patients
with mandibular retrognathism, there was a posterior
position of the hyoid associated with narrowing of the
upper airway. Alhajia and Al-Khateeb [10] also found a
significant correlation between jaw relation, hyoid position
and width of the pharyngeal cavity. Studies on the influ-
ence of surgical advancement or setback of the mandible
on the hyoid position and the pharyngeal airway showed
that mandibular advancement resulted in forward dis-
placement of the hyoid with widening of the minimum
pharyngeal airway [11], whereas the opposite was true in
the case of surgical mandibular setback [12].

3 Correlation between breathing
and craniofacial structures

It is a general assumption that nasorespiratory function
has an effect on dentofacial development. In particular,
A. Battagel et al. [9] reported that in patients with
mandibular retrognathism, there was a posterior
position of the hyoid associated with narrowing of the
upper airway. Alhajia and Al-Khateeb [10] also found a
significant correlation between jaw relation, hyoid position
and width of the pharyngeal cavity. Studies on the influ-
ence of surgical advancement or setback of the mandible
on the hyoid position and the pharyngeal airway showed
that mandibular advancement resulted in forward dis-
placement of the hyoid with widening of the minimum
pharyngeal airway [11], whereas the opposite was true in
the case of surgical mandibular setback [12].

3.1 Effects of adenoidectomy on
craniofacial growth pattern

Following adenoidectomy, accelerated growth of the
mandible was observed, with reduction of the mandibular
plane angle. Increased growth of the ascending ramus
of the mandible and the condyloid process were assumed
to be the cause [25]. This was explained by a change in

...
tongue position and hence auto-rotation of the mandible [14]. Overall, however, there was great variability in the reaction pattern. Despite weakening of the vertical growth pattern, the anterior facial height remained longer than in the healthy control group. By contrast, the inclination of the maxilla did not alter after adenoidectomy [26, [27].

4 Transverse maxillary deficiency

A narrow maxilla is one of the most common maxillary deformities (Figure 3a). Patients with transverse maxillary deficiency usually display a unilateral or bilateral posterior crossbite in occlusion (Figure 3b). The distance between the lateral walls of the nasal cavity and the nasal septum in these patients is often reduced, so that resistance of nasal air flow is increased [28]. In principle, there are four techniques for expanding excessively narrow maxillae: (a) orthodontic expansion e.g. by plate therapy or using a quad-helix appliance, (b) rapid maxillary expansion (RME) using a hyrax screw or palatal distractor, (c) surgically assisted orthodontic maxillary expansion and (d) transverse segmental osteotomy. Orthodontic expansion and – in more severe forms – rapid maxillary expansion are effective methods during childhood and adolescence (Figure 3c–d). When longitudinal growth has finished and bone maturity is almost complete, the intermaxillary suture is largely closed, which means resistance to orthodontic expansion is increased and a combined orthodontic and surgical approach is required to avoid complications such as fractures of the alveolar process (Figure 4a–c).

Figure 1: a) Patient with “adenoid facies” (open lip posture, mouth breathing, hypotonia), b) Patient with “long face syndrome” (excessively increased vertical dimension owing to greatly enlarged angle of the mandible)

Figure 2: Patient with “long face syndrome”. a) lateral cephalogram, b) cephalometric variations: 1) increased angle of the mandible, 2) retrognathic mandible, 3) increased lower facial height
For this purpose, maxillary osteotomies along the zones of skeletal resistance are performed [29], [30]. By contrast, purely surgical segmental osteotomy to correct a narrow maxilla is rare and is usually only undertaken in conjunction with other surgical corrections of the maxilla [31]. The skeletal effect of rapid maxillary expansion on the upper jaw is, however, age-dependent. If it is performed with the aid of a tooth-supported hydrax screw in the permanent dentition when the palatine suture is still open, the orthopedic effect versus the dental effect is roughly equivalent to one third of screw activation, whereas the effect is more than 50% in the deciduous and mixed dentition [32].

4.1 Influence of maxillary expansion on nasal cavity and breathing

Numerous studies have radiographically investigated the changes to the nasal cavity after maxillary expansion on the basis of posterior-anterior cephalometry [33], [34], [35]. Anatomically speaking, widening of the nasal cavity, especially the nasal floor, close to the palatal suture was found. Depending on the patients’ age and treatment method, the increase varied from 1.06 mm to 3.47 mm between the studies. Furthermore it was shown that posterior expansion of the maxilla also has a positive influence on the function of the nasopharyngeal cavity [36]. Studies using rhinomanometry and acoustic rhinometry before and after expansion revealed that the nasal volume and minimum cross-sectional area (MCA) of the nose increased, whereas nasal resistance decreased [37], [38], [39]. Questionnaires on the patients’ subjective assessment of their breathing showed that more than 50% felt an improvement following maxillary expansion [38]. However, the degree of reduction of nasal air resistance cannot be predicted because there is a wide variation in the individual response to maxillary expansion [40], [28].

In a recently published study by Monini et al. [41] on the effect of rapid maxillary expansion in children aged under 12 years, enlargement of the posterior airway was demonstrated as well as a significant improvement in nasal air flow. The authors concluded that maxillary expansion plays an important role not only in correction of maxillary narrowness, but also in the treatment of severe constrictions of the nasopharyngeal cavity. In patients with obstructive sleep apnea syndrome (OSAS), the improved nasal flow following maxillary expansion thus led to lower subatmospheric inspiratory pressure, which in turn reduced the pharyngeal collapse [42]. This situation was explained by the fact that the altered tongue position within the enlarged oral cavity reduced the retroglossal obstruction.

However, it is a matter of some debates how much maxillary expansion also influences the type of breathing. For instance, Warren et al. [43] stated that increased nasal air flow is not enough to achieve nasal breathing because other factors, such as nasal concha hyperplasia, nasal polyps, adenoidal hypertrophy and septal deviation, are responsible for mouth breathing. Consequently, the authors did not consider it justified to perform maxillary expansion solely to increase nasal breathing capacity in cases of mouth breathing.
5 Obstructive sleep apnoea syndrome (OSAS)

During sleep, muscle activity is decreased and the resistance of the upper airways increased [44]. The result is that the reduction of muscle tone can lead to OSAS in children with hypertrophic lymphatic tissue or another abnormality of the upper airways. Apart from adenotonsillar hypertrophy, other risk factors for OSAS in children are overweight, neuromuscular disorders and craniofacial anomalies.

It has furthermore been reported that sleep disturbances have an influence on the endocrine system, especially on the secretion of growth hormones [45], [46], [47]. Children with OSAS and hypertrophy of the lymphatic tissue showed disturbed somatic growth because of abnormal nocturnal secretion of growth hormone (GH) [48]. Following adenotonsillectomy, a significant increase in the serum levels of GH mediators, such as insulin-like growth factor I (IGF I) and its binding protein, was found [48], [49]. Thereafter somatic growth returned to normal or even caught up [48], [49].

Overall, similar craniofacial characteristics were found in children with OSAS to those in children with “adenoid facies” [50]. To investigate the extent to which OSAS alters the morphology of the jaws, the orthodontic models from children with OSAS were compared with those of children with a history of snoring and a group of healthy children [51]. In comparison with the control children, the OSAS children had a significantly enlarged overjet (horizontal overlap of upper over lower incisors), a reduced vertical overbite (vertical overlap) with a higher incidence of an open bite and a narrower upper and shorter lower dental arch. Both the OSAS children and the children with nocturnal snoring had distortion more commonly than the control group. The number of children with mandibular crowding and an anterior open bite rose with the increased obstructive apnea-hypopnea index. The effects of the increased resistance of the upper airways on jaw morphology were explained by the long-term repercussions of the altered head, mandibular and tongue posture adopted in order to ensure an adequate airway during sleep [51].

5.1 Importance of oral orthodontic appliances in the treatment of obstructive sleep apnoea syndrome

The most common intervention for patients with OSAS is removal of the adenoids and tonsils [48], [52]. However, this procedure is limited by the surgical risks in children with comorbidities and patients without hypertrophy of the lymphatic tissue.

This is why oral orthodontic appliances (OA; or mandibular advancement device, MAD) were used to enlarge the upper airway and prevent its collapse by displacing the mandible forwards [53]. The minimum pharyngeal distance behind the soft palate and tongue improved by 1 mm and 0.8 mm respectively. Despite the smaller faces of female patients, they showed a more pronounced reaction to mandibular protrusion. A larger degree of hyoid movement was associated with a more positive airway response.

In a study by Hänggi et al. [54], the changes in the pharyngeal airway during growth in children and adolescents were measured and compared with those of a group whose distocclusion had been treated by activator headgear therapy (an oral orthodontic appliance for forward displacement of the mandible, which is anchored to the head with a metal strap and cap). The results of this study showed significant differences between the two groups before and after treatment: in the activator headgear group, the mandibular malposition decreased more markedly, there was a larger increase in the pharyngeal area, pharyngeal length and narrowest distance between tongue and posterior pharyngeal wall. These changes remained stable in a long-term comparison. The positive effect of the orthodontic treatment, however, was not explained solely by the skeletal changes but also by the impact on the soft tissue. The altered tongue position, caused by increased tone of the genioglossus muscle, or other soft tissue changes resulting from the anterior shifting of the mandible, were held to be responsible for the airway changes.

In a review by Carvalho et al. [55] from 2009, the efficacy of MADs was to be investigated in children with OSAS. The review included all the randomized and quasi-randomized controlled trials comparing all types of appliances with a placebo or no treatment in children aged ≤15 years. The primary treatment outcome was to be reduction of apnea to less than one episode per hour. Furthermore data on the following parameters were to available: dental and skeletal relationship, improvement in sleep parameters, cognitive and phonoaudiologic function, behavioral problems, dropouts and withdrawals, quality of life, side effects, tolerability and cost-effectiveness. One of the 384 original trials fulfilled the inclusion criteria with a total number of 23 patients. Although this study did not answer all the questions posed in the review, the results do favor the use of MADs in children with OSAS. Nevertheless, at present there is not sufficient evidence to state with certainty that oral orthodontic appliances can be used effectively in the treatment of children with OSAS. However, OSAS is most common in middle-aged people. The reasons are overweight, family predisposition or natural physiological changes. It was found, for instance, that the depth of the oropharyngeal airway decreases with age [56] and the soft palate gets longer and thicker [57]. In addition, lying supine and a physiological decrease in muscle tone during sleep significantly reduce the dimensions of the pharyngeal airway [58]. Thus both snorers and people with OSAS have narrower airways, reduced oropharyngeal areas and larger tongues [59]. Furthermore cephalometric analyses in OSAS patients revealed shorter and more retrognathic mandibles [60]. Studies have particularly indicated the significance of the most narrowed area of the upper airway (retropalatal and retroglossal) in the dynamics of air flow [61]. As
this area is probably narrowed in middle-aged adults, the importance of therapeutically altering these dimensions was stressed [62].

In 2009 a review was published on the subject of using MADs for forward displacement of the mandible in obstructive sleep apnea compared with CPAP treatment and corrective surgery [63]. A total of 17 studies met the inclusion criteria. Compared with control appliances, MADs reduced the subjective feeling of tiredness and improved the apnea-hypopnea index. Compared with CPAP treatment, however, MAD therapy was less effective in reducing the apnea-hypopnea index. It was assumed that high nasal resistance and BMI, in particular, have an adverse effect on the efficacy of MADs [64]. CPAP therapy was more effective at improving minimum arterial oxygen saturation during sleep. However, the MADs were superior to corrective surgery on the upper airway. At present CPAP treatment therefore continues to be the therapy of choice for OSAS patients with severe symptoms and sleep disturbances. In the authors’ opinion, MADs should be reserved for patients with mild symptomatic OSAS and for patients who are unwilling to undergo or cannot tolerate CPAP treatment. According to a review by Hoffstein [65], the side effects of MADs are minor but frequent. The most common are excessive salivation, dry mouth, jaw pains and teeth discomfort. According to this study, efficacy and side effects depend particularly on the type of appliance, the degree of mandibular protrusion and vertical opening. After 30 months’ follow-up, 56–68% of the patients were still wearing the appliances. Again in this report the MAD was superior to the surgical procedure (UPPP) in reducing the apnea-hypopnea index. Furthermore magnetic resonance imaging of the pharynx was performed to study the efficacy of MADs in OSAS [66]. Müller’s manoeuvre with and without MAD was performed in 13 patients. The polysomnographic analysis revealed a reduction of the apnea-hypopnea index from 19.8±14.5 to 7.2±7.4 h⁻¹ by means of MAD. A reduction of >50% occurred in 7 patients, whereas the MAD therapy was unsuccessful in 6 patients. Five of the 7 patients who responded to the treatment had no significant pharyngeal obstruction during Müller’s manoeuvre when wearing the MAD, whereas they all did without the device. Conversely, there was a single velopharyngeal obstruction in 4 of the 6 patients for whom treatment failed and a combined obstruction of the velo- and glossopharynx in 2 patients during Müller’s manoeuvre. The results of this study suggest that the patency of the airway during Müller’s manoeuvre when wearing an MAD may be a suitable parameter for predicting the success of this appliance in cases of OSAS.

References


35. Bacicchi FA, Mutlu N, Karaman AI, Malkoc S, Kucukkolbasi H. Does the timing and method of rapid maxillary expansion have an effect on the changes in nasal dimensions? Angle Orthod. 2002;72:118-123.


Corresponding author:
Prof. Dr. Angelika Stellzig-Eisenhauer
Poliklinik für Kieferorthopädie, Würzburg University Hospital, Pleicherwall 2, 97070 Wuerzburg, Germany, Phone: +49/ 931/ 20173320, Fax: +49/ 931/ 20173300
A_Stellzig@klinik.uni-wuerzburg.de

Please cite as
DOI: 10.3205/cto000068, URN: urn:nbn:de:0183-cto0000688

This article is freely available from http://www.egms.de/en/journals/cto/2011-9/cto000068.shtml

Published: 2011-04-27

Copyright ©2011 Stellzig-Eisenhauer et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share — to copy, distribute and transmit the work, provided the original author and source are credited.