gms | German Medical Science

65th Annual Meeting of the German Society of Neurosurgery (DGNC)

German Society of Neurosurgery (DGNC)

11 - 14 May 2014, Dresden

Implementation of a Brain-Computer Interface based training environment for functional restoration of patients with severe upper-limb paresis

Meeting Abstract

  • Georgios Naros - Sektion Funktionelle und Restaurative Neurochirurgie, Klinik für Neurochirurgie und AG Neuroprothetik im Zentrum für Integrative Neurowissenschaften, Universitätsklinikum Tübingen
  • Florian Grimm - Sektion Funktionelle und Restaurative Neurochirurgie, Klinik für Neurochirurgie und AG Neuroprothetik im Zentrum für Integrative Neurowissenschaften, Universitätsklinikum Tübingen
  • Dominic Kraus - Sektion Funktionelle und Restaurative Neurochirurgie, Klinik für Neurochirurgie und AG Neuroprothetik im Zentrum für Integrative Neurowissenschaften, Universitätsklinikum Tübingen
  • Daniel Brauchle - Sektion Funktionelle und Restaurative Neurochirurgie, Klinik für Neurochirurgie und AG Neuroprothetik im Zentrum für Integrative Neurowissenschaften, Universitätsklinikum Tübingen
  • Vladislav Royter - Sektion Funktionelle und Restaurative Neurochirurgie, Klinik für Neurochirurgie und AG Neuroprothetik im Zentrum für Integrative Neurowissenschaften, Universitätsklinikum Tübingen
  • Robert Bauer - Sektion Funktionelle und Restaurative Neurochirurgie, Klinik für Neurochirurgie und AG Neuroprothetik im Zentrum für Integrative Neurowissenschaften, Universitätsklinikum Tübingen
  • Alireza Gharabaghi - Sektion Funktionelle und Restaurative Neurochirurgie, Klinik für Neurochirurgie und AG Neuroprothetik im Zentrum für Integrative Neurowissenschaften, Universitätsklinikum Tübingen

Deutsche Gesellschaft für Neurochirurgie. 65. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie (DGNC). Dresden, 11.-14.05.2014. Düsseldorf: German Medical Science GMS Publishing House; 2014. DocDI.12.06

doi: 10.3205/14dgnc187, urn:nbn:de:0183-14dgnc1879

Published: May 13, 2014

© 2014 Naros et al.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share – to copy, distribute and transmit the work, provided the original author and source are credited.


Outline

Text

Objective: Brain stimulation has the potential to become a valuable intervention for patients with severe upper-limb paresis following brain injury, surgery or stroke. Neuromodulation has been shown to be most effective in inducing plasticity when applied in conjunction with repetitive motor practice. Novel Brain-Computer Interface (BCI) based training environments are a promising solution to facilitate motor restoration substituting the disturbed efferent channel of the human motor system and enabling brain-state dependent application of brain stimulation.

Method: We introduced a training set-up that consists of both gravity-compensating and robot-controlled devices for the upper extremity of patients with severe arm and hand paresis. Embedded in closed-loop brain-computer interface (BCI) technology this set-up allowed patients to volitionally control an orthosis attached to their paretic extremity by the modulation of brain oscillations. The significant increase of BCI control was paralleled by an enhancement of natural movement-associated cortical activity and clinical improvements.

Results: Motor imagery related desynchronization of sensorimotor oscillations of the affected hemisphere was sufficient for the patients to reliably control the robotic devices for autonomous motor training of their affected limb. Natural feedback could be provided contingent to motor intention. Simultaneous recordings of EEG, EMG and kinematic signals allowed on-line monitoring of physiological changes in the course of the training.

Conclusions: This brain-robot interface set-up is a promising approach in order to train the brain in patients without volitional movements. In addition to plastic changes induced by contingent haptic feedback to motor intention, this environment allows for the exploration of brain-state dependent stimulation protocols for motor restoration in severely affected paretic patients.