gms | German Medical Science

62nd Annual Meeting of the German Society of Neurosurgery (DGNC)
Joint Meeting with the Polish Society of Neurosurgeons (PNCH)

German Society of Neurosurgery (DGNC)

7 - 11 May 2011, Hamburg

Intraoperative quantification of cerebral perfusion by microscope-integrated analysis of near infrared indocyanine green fluorescence angiography

Meeting Abstract

  • M.A. Kamp - Klinik für Neurochirurgie, Heinrich-Heine-Universität, Düsseldorf, Düsseldorf, Deutschland
  • P. Slotty - Klinik für Neurochirurgie, Heinrich-Heine-Universität, Düsseldorf, Düsseldorf, Deutschland
  • N. Etminan - Klinik für Neurochirurgie, Heinrich-Heine-Universität, Düsseldorf, Düsseldorf, Deutschland
  • H.J. Steiger - Klinik für Neurochirurgie, Heinrich-Heine-Universität, Düsseldorf, Düsseldorf, Deutschland
  • D. Hänggi - Klinik für Neurochirurgie, Heinrich-Heine-Universität, Düsseldorf, Düsseldorf, Deutschland
  • W. Stummer - Klinik für Neurochirurgie, Westfälische Wilhelms-Universität Münster, Münster, Deutschland

Deutsche Gesellschaft für Neurochirurgie. Polnische Gesellschaft für Neurochirurgen. 62. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie (DGNC), Joint Meeting mit der Polnischen Gesellschaft für Neurochirurgen (PNCH). Hamburg, 07.-11.05.2011. Düsseldorf: German Medical Science GMS Publishing House; 2011. DocDI.10.07

DOI: 10.3205/11dgnc171, URN: urn:nbn:de:0183-11dgnc1719

Published: April 28, 2011

© 2011 Kamp et al.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share – to copy, distribute and transmit the work, provided the original author and source are credited.


Outline

Text

Objective: Intraoperative measurements of cerebral blood flow are of interest during vascular neurosurgery. Near infrared indocyanine green (ICG) fluorescence angiography was introduced for visualizing vessel patency intraoperatively. However, quantitative information has not been available. Here, we report our experience with a microscope with integrated dynamic ICG fluorescence analysis system supplying semiquantitative information on blood flow.

Methods: ICG fluorescence curves of the cortex and the cerebral vessels were recorded by software integrated into the surgical microscope (“Flow 800” software; Zeiss Pentero) in 30 patients undergoing surgery for different pathologies. The following hemodynamic parameters were assessed: maximum fluorescence intensity, rise time, time to peak, cerebral blood flow index (cBFI) and transit times from arteries to cortex.

Results: For patients without obvious perfusion deficit, maximum fluorescence intensity was 177.7 arbitrary intensity units (AI; 5 mg ICG bolus), mean rise time 5.2 s (range: 2.9-8.2s; SD: 1.3s), mean time to peak 9.4 s (4.9-15.2 s, SD: 2.5s), mean cBFI 38.6 AI/s (13.5-180.6 AI/s; SD: 36.9s) and mean transit time 1.5 s (range: 360ms–3s, SD: 0.73s). For 3 patients with impaired cerebral perfusion, time to peak, rise time and transit time between arteries and cortex were markedly prolonged (>20s, >9s, >5s). In single patients the degree of perfusion impairment could be quantified by the cBFI ratios between normal and ischemic tissue. Transit times also reflected blood flow perturbations in arteriovenous fistulas.

Conclusions: Quantification of ICG-based fluorescence angiography appears to be useful for intraoperative monitoring of arterial patency and regional cerebral blood flow.