gms | German Medical Science

61st Annual Meeting of the German Society of Neurosurgery (DGNC) as part of the Neurowoche 2010
Joint Meeting with the Brazilian Society of Neurosurgery on the 20 September 2010

German Society of Neurosurgery (DGNC)

21 - 25 September 2010, Mannheim

Seeing other people move – the cerebellum and visual perception of body motion

Meeting Abstract

  • Arseny A. Sokolov - Klinik für Neurochirurgie, Universität Tübingen, Deutschland
  • Michael Erb - Sektion für Experimentelle Magnetresonanz des Zentralnervensystems, Abteilung für Neuroradiologie, Klinik für Radiologie, Universität Tübingen, Deutschland
  • Alireza Gharabaghi - Klinik für Neurochirurgie, Universität Tübingen, Deutschland; Forschungsgruppe Neuroprothetik, Werner Reichardt Centre for Integrative Neuroscience, Universität Tübingen, Deutschland
  • Wolfgang Grodd - Sektion für Experimentelle Magnetresonanz des Zentralnervensystems, Abteilung für Neuroradiologie, Klinik für Radiologie, Universität Tübingen, Deutschland
  • Marina A. Pavlova - Abteilung für Entwicklungsneurologie, Klinik für Kinder- und Jugendmedizin, Universität Tübingen, Deutschland; MEG-Zentrum, Institut für Medizinische Psychologie und Verhaltensneurobiologie, Universität Tübingen, Deutschland
  • Marcos S. Tatagiba - Klinik für Neurochirurgie, Universität Tübingen, Deutschland

Deutsche Gesellschaft für Neurochirurgie. 61. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie (DGNC) im Rahmen der Neurowoche 2010. Mannheim, 21.-25.09.2010. Düsseldorf: German Medical Science GMS Publishing House; 2010. DocV1698

DOI: 10.3205/10dgnc169, URN: urn:nbn:de:0183-10dgnc1693

Published: September 16, 2010

© 2010 Sokolov et al.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share – to copy, distribute and transmit the work, provided the original author and source are credited.


Outline

Text

Objective: Our preceding findings in neurosurgical patients with cerebellar tumors provided the first evidence that integrity of the left lateral cerebellum is essential for intact visual perception of body motion. Veridical visual perception of others’ actions is indispensable in a variety of daily-life situations, including safe car driving, motor learning and also complex social interaction. We used functional MRI to further pinpoint the left lateral cerebellar regions engaged in action observation and to analyze functional connectivity between the cerebellum and the cortical circuitry underpinning visual perception of body motion.

Methods: Thirteen participants were scanned by using a 3T MRI scanner (Siemens Medical Solutions, Erlangen, Germany) while they viewed a point-light walking figure consisting of 11 dots placed on the main joints of an otherwise invisible human body or a spatially scrambled control display. The participants performed a one-back repetition task, responding with their right index finger to each second identical stimulus. The fMRI data was pre-processed and analyzed by using Statistical Parametric Mapping 8b.

Results: In agreement with the preceding lesion data, the whole-brain fMRI analysis reveals robust responses to biological motion in the lobules Crus I and VIIB of the left lateral cerebellum (p<0.05, FWE-corrected). Functional connectivity analysis and dynamic causal modelling show reciprocal communication between the left lateral cerebellar lobule Crus I and the right superior temporal sulcus (mean endogenous connectivity parameters: 0.55±0.15 for Crus I to STS, and 0.51±0.18 for STS to Crus I).

Conclusions: For the first time, these findings indicate bidirectional communication between the left lateral cerebellum and the right STS, a cornerstone of the neural circuitries for visual processing of body motion and visual social cognition. The outcome of this study has broad implications for clinical neuroscience, ranging from neuropsychiatry over neurology to neurosurgery. In posterior fossa surgery, this brain imaging protocol can be routinely used for identifying and preserving cortical and subcortical cerebellar regions that are eloquent for visual perception of body motion.