gms | German Medical Science

55. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie e. V. (DGNC)
1. Joint Meeting mit der Ungarischen Gesellschaft für Neurochirurgie

Deutsche Gesellschaft für Neurochirurgie (DGNC) e. V.

25. bis 28.04.2004, Köln

Compression of the cerebral cortex during corticotomy: A study of dimpling in rats

Kortexkompression bei der Insertion von Mikroelektroden

Meeting Abstract

  • corresponding author Ulrich Knopp - Dept. of Neurosurgery, Universität zu Lübeck, Lübeck
  • W. Jensen - Center for Sensory Motor Interaction, Aalborg University, Frederik Bajers Vej, Aalborg /DK
  • D. T. Kewley - California Institute of Technology, Division of Biology, MC 216-76, Pasadena /USA
  • J. M. Bower - Cajal Neuroscience Center, University of Texas San Antonio, San Antonio /USA
  • K. Yoshida - Center for Sensory Motor Interaction, Aalborg University, Frederik Bajers Vej, Aalborg /DK
  • U. G. Hofmann - Institut für Signalverarbeitung und Prozeßrechentechnik, Medizinische Universität zu Lübeck, Lübeck

Deutsche Gesellschaft für Neurochirurgie. Ungarische Gesellschaft für Neurochirurgie. 55. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie e.V. (DGNC), 1. Joint Meeting mit der Ungarischen Gesellschaft für Neurochirurgie. Köln, 25.-28.04.2004. Düsseldorf, Köln: German Medical Science; 2004. DocP 01.1

The electronic version of this article is the complete one and can be found online at: http://www.egms.de/en/meetings/dgnc2004/04dgnc0284.shtml

Published: April 23, 2004

© 2004 Knopp et al.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share – to copy, distribute and transmit the work, provided the original author and source are credited.


Outline

Text

Objective

Intracerebral bleedings or edema are some of the iatrogenic complications of implanting penetrating electrodes into the brain. Given the necessity for invasive surgery for both functional neurosurgery as well as basic neuroscience experiments in the brain, a strategy of using techniques to minimally disrupt the brain surface is commonly practiced. However, assessment of the damage to the brain tissue during insertion of any kind of probe or catheter has to our knowledge not yet been carried out. We describe the effort to quantify the local displacement of brain tissue during insertion of micro-electrode probes of different shapes using a custom-made force and displacement sensor. The forces and displacement generated by silicon electrodes are compared to more conventional glass and tungsten electrodes.

Methods

These experiments were based on a custom-built force detection device capable of measuring the force applied to a microelectrode at contact and during insertion into the brain. The elasticity of the indented brain was calculated by applying a fit of the Hertz model given the measured opening angle of each microelectrode.

Results

Analyzing the resulting dimpling effect, we were able to determine the elastic modulus of superficial brain tissue to lie in the range of 5kPa to 25kPa. The leading factor influencing dimpling appears to be the opening angle of the tip taper and not the sharpness of the tip itself.

Conclusions

Evaluated in the context of a model of tissue elasticity, we conclude that the pial membrane itself provides most of the resistance to probe entry. This hypothesis is tested by enzymatic digestion of the membrane, which is shown to reduce dimpling by decreasing penetration forces. Based on our study, we suggest changes to conventional tip shapes, which would be expected to reduce dimpling.