gms | German Medical Science

132. Kongress der Deutschen Gesellschaft für Chirurgie

Deutsche Gesellschaft für Chirurgie

28.04. - 01.05.2015, München

Application of the contractile properties of spider silk for the differentiation of C2C12 cells into smooth muscle cells

Meeting Abstract

  • Khaled Dastagir - Medizinische Hochschule Hannover, Plastische Hand- und Wiederherstellungschirurgie, Hannover, Deutschland
  • Nadjib Dastagir - Medizinische Hochschule Hannover, Plastische Hand- und Wiederherstellungschirurgie, Hannover, Deutschland
  • Vesna Bucan - Medizinische Hochschule Hannover, Plastische Hand- und Wiederherstellungschirurgie, Hannover, Deutschland
  • Sarah Strauss - Medizinische Hochschule Hannover, Plastische Hand- und Wiederherstellungschirurgie, Hannover, Deutschland
  • Jörn Kuhbier - Medizinische Hochschule Hannover, Plastische Hand- und Wiederherstellungschirurgie, Hannover, Deutschland
  • Christine Radtke - Medizinische Hochschule Hannover, Plastische Hand- und Wiederherstellungschirurgie, Hannover, Deutschland
  • Peter M. Vogt - Medizinische Hochschule Hannover, Plastische Hand- und Wiederherstellungschirurgie, Hannover, Deutschland
  • Kerstin Reimers - Medizinische Hochschule Hannover, Plastische Hand- und Wiederherstellungschirurgie, Hannover, Deutschland

Deutsche Gesellschaft für Chirurgie. 132. Kongress der Deutschen Gesellschaft für Chirurgie. München, 28.04.-01.05.2015. Düsseldorf: German Medical Science GMS Publishing House; 2015. Doc15dgch628

doi: 10.3205/15dgch628, urn:nbn:de:0183-15dgch6288

Published: April 24, 2015

© 2015 Dastagir et al.
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.


Outline

Text

Introduction: Changes by the function and phenotypic modulation of vascular smooth muscle cells (VSMCs) play a major role in numerous diseases, including atherosclerosis, restenosis, hypertension and aneurysms. A better understanding of the cellular and molecular mechanisms that control differentiation into VSMC is necessary to develop new methods for prevention and treatment of the above mentioned diseases. The development and improvement of in vitro differentiation methods into smooth muscle cells are important in the field of tissue engineering.

The elastic property of spider silk is well documented. Another characteristic of spider silk is its supercontraction in the liquid medium and relaxation in a dry environment. We have used these properties of spider silk and developed a motorized bioreactor to differentiate C2C12 cells into smooth muscle cells.

Material and methods: C2C12 cells were seeded on a spider silk scaffold and mounted on a rotating arm in a bioreactor, which periodically (1 rpm) moved the scaffold in and out of the medium. After three weeks of incubation, the morphological structure, behavior, and molecular mechanisms of the new tissue were examined by histological staining (HE), SEM, Western blot, immunohistochemistry (alpha-SMA) and real time PCR.

Results: SEM examination and histological staining showed that the above mentioned cells adhered on the spider silk scaffold and after a three-week incubation assumed a thick and smooth muscle-like formation. The expression of characteristic markers of smooth muscle cells were detected by using qPCR (desmin, and MEF2D MYF5) and Western blot (alpha-SMA).

Conclusion: Our data suggest that differentiation of C2C12 myoblasts into smooth muscle cells is possible by a periodic stress, which consists of relaxation and train-stress phase. We have thus developed an innovative bioreactor by using the contractile properties of spider silk.