gms | German Medical Science

Kongress Medizin und Gesellschaft 2007

17. bis 21.09.2007, Augsburg

Data Mining in der Pharmakovigilanz

Meeting Abstract

Suche in Medline nach

  • Marc Suling - Bremer Institut für Präventionsforschung und Sozialmedizin (BIPS), Bremen

Kongress Medizin und Gesellschaft 2007. Augsburg, 17.-21.09.2007. Düsseldorf: German Medical Science GMS Publishing House; 2007. Doc07gmds414

Die elektronische Version dieses Artikels ist vollständig und ist verfügbar unter: http://www.egms.de/de/meetings/gmds2007/07gmds414.shtml

Veröffentlicht: 6. September 2007

© 2007 Suling.
Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielf&aauml;ltigt, verbreitet und &oauml;ffentlich zug&aauml;nglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.


Gliederung

Text

Einleitung/Hintergrund: Das Drug-Safety-Monitoring von Arzneimitteln zur Erkennung von unbekannten Nebenwirkungen nach der Markteinführung erhält in den letzten Jahren eine stetig wachsende Bedeutung. Die auszuwertenden Datenmengen werden umfangreicher und weisen eine tiefere innere Komplexität auf. Dies stellt klassische Methoden zur Signalgenerierung vor massive Probleme. Daher scheinen hochperformante Data Mining-Methoden eine viel versprechende Möglichkeit zu sein, Hypothesen über die innere Struktur solcher Datenbeständen zu generieren und damit die klassischen Techniken zu ergänzen [1].

Material und Methoden: Verschiedene etablierte Algorithmen des Data Mining (DM) werden gegenübergestellt. Um einen Einblick in die Güte der Ergebnisse zu bekommen, werden die Verfahren zunächst in einer Simulationsstudie angewandt. Ein besonderes Augenmerk wird gelegt auf mögliche Unterschiede in der Strukturerkennung und Laufzeit zwischen "einfachen" DM-Verfahren und solchen, die komplexe mathematische Methoden einsetzen. Nach Adjustierung einzelner Parameter der verschiedenen Verfahren werden diese auf reale Daten angewandt und die Ergebnisse mit denen klassischer Verfahren zur Signalgenerierung verglichen.

Ein weiterer Aspekt, der im Fokus der Untersuchungen steht, ist die erforderliche Mindestgröße einer Datenbank, um durch den Einsatz von DM-Methoden einen Vorteil zu erzielen.

Ergebnisse und Diskussion: Es werden die Ergebnisse der vergleichenden Simulationsstudien präsentiert, wobei speziell auf zwei Punkte eingegangen wird. Zum einen werden die "einfachen" und die "komplexen" DM-Algorithmen verglichen, zum zweiten die Änderungen der Ergebnisse im Laufe der Parameter-Adjustierung der einzelnen Verfahren aufgezeigt. Weiterhin werden die Ergebnisse der Anwendung der adjustierten Techniken auf Daten einer klinischen Studie berichtet und vor- und Nachteile der eingesetzten Verfahren diskutiert.


Literatur

1.
Hauben M, Madigan D, Gerrits CM, Walsh L, van Puijenbroek EP. The role of data mining in pharmacovigilance. Expert Opinion on Drug Safety. 2005;4(5):929.