gms | German Medical Science

50. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (gmds)
12. Jahrestagung der Deutschen Arbeitsgemeinschaft für Epidemiologie (dae)

Deutsche Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie
Deutsche Arbeitsgemeinschaft für Epidemiologie

12. bis 15.09.2005, Freiburg im Breisgau

On the incorporation of model selection uncertainty into prognostic models for survival data

Meeting Abstract

Suche in Medline nach

  • Anika Buchholz - Universitätsklinikum Freiburg, Freiburg
  • Norbert Holländer - Universitätsklinikum Freiburg, Freiburg
  • Willi Sauerbrei - Universitätsklinikum Freiburg, Freiburg

Deutsche Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie. Deutsche Arbeitsgemeinschaft für Epidemiologie. 50. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (gmds), 12. Jahrestagung der Deutschen Arbeitsgemeinschaft für Epidemiologie. Freiburg im Breisgau, 12.-15.09.2005. Düsseldorf, Köln: German Medical Science; 2005. Doc05gmds185

Die elektronische Version dieses Artikels ist vollständig und ist verfügbar unter: http://www.egms.de/de/meetings/gmds2005/05gmds299.shtml

Veröffentlicht: 8. September 2005

© 2005 Buchholz et al.
Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielf&aauml;ltigt, verbreitet und &oauml;ffentlich zug&aauml;nglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.


Gliederung

Text

Introduction

Predictions of disease outcome in prognostic models are usually based on a single selected model. However, often several models fit data equally well, but these models might differ substantially in terms of included explanatory variables and might lead to different predictions for individual patients. Ignoring the uncertainty caused by the model selection process results in the underestimation of the variance of a predictor, which is obtained by a single model.

Subject and methods

For survival data, we discuss two approaches to account for model selection uncertainty, with the main emphasis on variable selection in a Cox model. The approaches are based on Bayesian model averaging [1] and bootstrap model averaging [2], respectively. In data examples, we compare predictions of the approaches and discuss issues of interpretation and practical utility.

Results

The approach based on the bootstrap eliminates variables hardly supported by the data. It gives results which are easier to interpret and which have a higher practical utility.

Discussion

The bootstrap model averaging approach has several advantages for practical use. For both model averaging approaches simulation studies are required to get further insight into the properties.


References

1.
Volinsky CT, Madigan D, Raftery AE, Kronmal RA. Bayesian model averaging in proportional hazard models: Assessing the risk of a stroke. JRSS Series C 1997; 46: 433-48
2.
Augustin N, Sauerbrei W, Schumacher M. The practical utility of incorporating model selection uncertainty into prognostic models for survival data. Statistical Modelling 2005, in press.