gms | German Medical Science

Deutscher Kongress für Orthopädie und Unfallchirurgie
74. Jahrestagung der Deutschen Gesellschaft für Unfallchirurgie
96. Tagung der Deutschen Gesellschaft für Orthopädie und Orthopädische Chirurgie
51. Tagung des Berufsverbandes der Fachärzte für Orthopädie und Unfallchirurgie

26. - 29.10.2010, Berlin

Optimized differentiation of human mesenchymal stromal cells for vascular tissue engineering applications

Meeting Abstract

  • S. Zwingenberger - Universitätsklinikum Carl Gustav Carus, Klinik und Poliklinik für Orthopädie, DFG Center for Regenerative Therapies, Dresden, Germany
  • C. Vater - Universitätsklinikum Carl Gustav Carus, Klinik und Poliklinik für Orthopädie, DFG Center for Regenerative Therapies, Dresden, Germany
  • M. Schieker - Chirurgische Klinik - Innenstadt, LMU München, Experimentelle Chirurgie und Regenerative Medizin, München, Germany
  • K.-P. Günther - Universitätsklinikum Carl Gustav Carus, Klinik und Poliklinik für Orthopädie, DFG Center for Regenerative Therapies, Dresden, Germany
  • M. Stiehler - Universitätsklinikum Carl Gustav Carus, Klinik und Poliklinik für Orthopädie, DFG Center for Regenerative Therapies, Dresden, Germany

Deutscher Kongress für Orthopädie und Unfallchirurgie. 74. Jahrestagung der Deutschen Gesellschaft für Unfallchirurgie, 96. Tagung der Deutschen Gesellschaft für Orthopädie und Orthopädische Chirurgie, 51. Tagung des Berufsverbandes der Fachärzte für Orthopädie. Berlin, 26.-29.10.2010. Düsseldorf: German Medical Science GMS Publishing House; 2010. DocIN23-786

doi: 10.3205/10dkou143, urn:nbn:de:0183-10dkou1432

Veröffentlicht: 21. Oktober 2010

© 2010 Zwingenberger et al.
Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.


Gliederung

Text

Objective: Human bone marrow-derived mesenchymal stromal cells (MSCs) can differentiate into vari-ous cellular phenotypes and are key components for cell-based musculoskeletal regeneration (Stiehler et al. Adv Exp Med Biol. 2006;585:31-48). Regenerative therapy of critical-size osseous defects is demanding and requires vasculari-sation for osteogenesis, nutrient supply and waste product removal. Due to the limited avail-ability and replicative capacity of somatic smooth muscle cells (SMCs), MSCs represent an appealing source of smooth muscle progenitor cells for vascular engineering approaches (Poh et al. Lancet 365, 2122, 2005) [3].

Therefore, the aim of this study was to evaluate different cell culture media to enhance MSC differentiation into SMCs.

Methods: Human immortalized single-cell derived MSCs [4] were cultured in alpha-MEM containing different concentrations of FCS (10%, 5%, 0.5%) with and without TFG-β1 (10 ng/ml, Bio-zol, Eching, Germany) for up to 14 days. Deoxyribonucleic acid content was determined to assess cellular proliferation. To evaluate differentiation of MSCs into SMCs gene expression levels of α-SMA, Calponin and SMMHC were ananlysed by quantiative real-time RT-PCR (Mx3000P Multiplex, Stratagene, NL) and normalized to GAPDH expression. Furthermore cell morphology was evaluated qualitatively by light and fluorescence microscopy.

Results and conclusions: Most favourable cell proliferation rates were observed for α-MEM with 10% FCS and without TGF-β1 (increase in cell number day 1 to day 14, x-fold: 36.9±3.4). Cultivation of MSCs in medium containing 0.5% FCS and 10 ng/ml TGF-β1 lead to significantly lower cell numbers (increase in cell number day 1 to day 14, x-fold: 6.8±0.9, p<0.001). Highest gene expres-sion levels for α-SMA and Calponin were reached by using 5% and 0.5% FCS and 10 ng/ml TGF-β1.

Differences in combinations and concentrations of cell culture supplements notably influence muscular differentiation of MSCs in vitro. Our results indicate that low concentrations of FCS and the presence of TGF-β1 enhance differentiation of MSCs towards the SMC phenotype. These findings will help to support further optimization of vascular engineering strategies for cell-based musculoskeletal tissue regeneration.

Acknowledgements: German Academic Exchange Service/Federal Ministry of Education and Research (grant # D/09/04774) for financial support.