gms | German Medical Science

59. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie (DGNC)
3. Joint Meeting mit der Italienischen Gesellschaft für Neurochirurgie (SINch)

Deutsche Gesellschaft für Neurochirurgie (DGNC) e. V.

01. - 04.06.2008, Würzburg

An algorithm to assess the rehabilitation potential in chronic hydrocephalus with a minimal data set

Ein Algorithmus um das Erholungspotential bei chronischem Hydrozephalus mit wenigen Daten zu ermitteln

Meeting Abstract

Suche in Medline nach

  • corresponding author M. Kiefer - Saarland University Medical School, Department of Neurosurgery
  • R. Eymann - Saarland University Medical School, Department of Neurosurgery

Deutsche Gesellschaft für Neurochirurgie. Società Italiana di Neurochirurgia. 59. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie e.V. (DGNC), 3. Joint Meeting mit der Italienischen Gesellschaft für Neurochirurgie (SINch). Würzburg, 01.-04.06.2008. Düsseldorf: German Medical Science GMS Publishing House; 2008. DocP 049

Die elektronische Version dieses Artikels ist vollständig und ist verfügbar unter:

Veröffentlicht: 30. Mai 2008

© 2008 Kiefer et al.
Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen ( Er darf vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.



Objective: In the daily clinical practice it is often necessary to judge whether patients with a chronic hydrocephalus (e.g. Normal pressure hydrocephalus) might have a realistic chance to benefit from treatment or not. Objective was to establish a decision tree with the need of a minimal data set to provide a reliable prognosis.

Methods: A total of 125 patients with chronic hydrocephalus (60% idiopathic Normal-Pressure Hydrocephalus) was assessed, shunted and followed-up for at least one year. At the time of clinical presentation a minimal data set comprising of a clinical grading (Kiefer-Index), a Co-Morbidity Grading (CMI), age and the duration of the anamnesis have been collected. The clinical result was dichotomized to responders and non-responders after a follow-up of 1 year after shunting. Shunt indication based on CSF hydrodynamics and was not influenced by the estudied data. Statistics: ANOVA, CHI-square-, Spearman-, Kuskal-Wallis, Wilcoxen-U-Test.

Results: The overall responder rate was 79%. All variables had a significant (age: p=0.02, anamnesis duration: p=0.04, Co-Morbidity: p<0.000, preoperative clinical state: p=0.0016) but not independent influence on outcome. A decision tree could be established which allows with an astonishing precision to predict whether patients are good shunt candidates or not. Some examples: The first to look at is the CMI: The prognosis becomes clearly worse with CMI >3 points and the rehabilitation chance is only minimal with CMI >12 points. A preoperative worse clinical state (KI >12 points) together with an older age (>70 years) and an anamnesis duration >1 years reduces the responder rate to <40%. For each given combination of data a precise prediction of the individual rehabilitation chance is possible.

Conclusions: With the established decision tree it is possible to predict the individual chance to benefit from hydrocephalus treatment at the hand of a very restricted data set which can be assessed with the first presentation of outpatients facilitating the decision whether or not further invasive measures are justified or not.