gms | German Medical Science

58. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie e. V. (DGNC)

Deutsche Gesellschaft für Neurochirurgie (DGNC) e. V.

26. bis 29.04.2007, Leipzig

Technical aspects using virtual and augmented reality for cerebral cavernoma surgery

Technische Gesichtspunkte des Einsatzes von virtueller und erweiterter Realität in der Chirurgie zerebraler Kavernome

Meeting Abstract

  • corresponding author A. Stadie - Klinik für Neurochirurgie, Johannes Gutenberg-Universität Mainz
  • R. Reisch - Klinik für Neurochirurgie, Johannes Gutenberg-Universität Mainz
  • M. Glaser - Klinik für Neurochirurgie, Johannes Gutenberg-Universität Mainz
  • P. Stoeter - Institut für Neuroradiologie, Johannes Gutenberg-Universität Mainz
  • A. Perneczky - Klinik für Neurochirurgie, Johannes Gutenberg-Universität Mainz

Deutsche Gesellschaft für Neurochirurgie. 58. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie e.V. (DGNC). Leipzig, 26.-29.04.2007. Düsseldorf: German Medical Science GMS Publishing House; 2007. DocP 021

Die elektronische Version dieses Artikels ist vollständig und ist verfügbar unter: http://www.egms.de/de/meetings/dgnc2007/07dgnc276.shtml

Veröffentlicht: 11. April 2007

© 2007 Stadie et al.
Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielf&aauml;ltigt, verbreitet und &oauml;ffentlich zug&aauml;nglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.


Gliederung

Text

Objective: Precise and sophisticated preoperative virtual reality surgery planning combined with modern intraoperative navigation systems and using intraoperative augmented reality should make a contribution to optimizing cavernoma surgery by identifying the ideal approach to reach the lesion as atraumatically as possible.

Methods: From 12/02 until 11/05 we performed 21 cases of cavernoma surgery planning using virtual reality. In 16 of the 21 presented cases we used intraoperative neuronavigation and augmented reality. Our control series consists of 45 patients undergoing cavernoma surgery over the same period. In 27 of those 45 cases neuronavigation was used intraoperatively. We used the Dextroscope, the DextroBeam and the RadioDexter Software of VolumeInteractions, Singapore for building and presenting the virtual reality model. We used the VectorVision neuronavigation system registration of BrainLab, Germany. We used a navigated NC4 microscope of CarlZeiss, Germany. The cavernoma was outlined using the iPlan software of BrainLab, Germany and was this image was injected into the surgeon’s ocular.

Results: The mean value of the time spent for creating the virtual reality model was 84 minutes. In all 21 cases we were able to find an optimally suited approach. The mean time spent for positioning the patient was 52 minutes. In the control group the time for positioning was 47 minutes. The duration of surgery in the study group was 144 minutes. In our control group, we found a duration of 110 minutes. The virtual reality model proved to be precise. Augmented reality aided in finding the borders of the cavernoma avoiding the surgeon to take his eyes of the microscopic image. All surgeons reported on a feeling of enhanced self confidence intraoperatively after having planned surgery with the aid of virtual reality.

Conclusions: Planning of cavernoma surgery in a virtual reality environment provides a safe and efficient means of preparing difficult three dimensional procedures and leads to a better spatial understanding of complex pathoanatomical situations. It offers the possibility to preoperatively plan different approaches thus giving the surgeon the option of finding the optimally suited approach for the specific case. We were able to establish a novel method of planning and performing cavernoma surgery using state of the art techniques that in this consequence have not been reported on before.