gms | German Medical Science

56. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie e. V. (DGNC)
3èmes journées françaises de Neurochirurgie (SFNC)

Deutsche Gesellschaft für Neurochirurgie e. V.
Société Française de Neurochirurgie

07. bis 11.05.2005, Strasbourg

Finite element simulation of brain tissue biomechanics in the controlled cortical contusion model

Simulation der Biomechanik des Gehirns im kortikalen Kontusionsmodell mittels Finite Elemente

Meeting Abstract

  • corresponding author M. Skardelly - Klinik und Poliklinik für Neurochirurgie, Universität Leipzig
  • A. Pena - Academic Neurosurgery Unit, University of Cambridge Clinical School, Cambridge/UK
  • D. Stiller - In-vivo MRI Labor, Boehringer-Ingelheim Pharma KG, Biberach
  • M. Jaeger - Klinik und Poliklinik für Neurochirurgie, Universität Leipzig
  • J. D. Pickard - Academic Neurosurgery Unit, University of Cambridge Clinical School, Cambridge/UK
  • M. U. Schuhmann - Klinik und Poliklinik für Neurochirurgie, Universität Leipzig

Deutsche Gesellschaft für Neurochirurgie. Société Française de Neurochirurgie. 56. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie e.V. (DGNC), 3èmes journées françaises de Neurochirurgie (SFNC). Strasbourg, 07.-11.05.2005. Düsseldorf, Köln: German Medical Science; 2005. DocP057

Die elektronische Version dieses Artikels ist vollständig und ist verfügbar unter: http://www.egms.de/de/meetings/dgnc2005/05dgnc0325.shtml

Veröffentlicht: 4. Mai 2005

© 2005 Skardelly et al.
Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.


Gliederung

Text

Objective

The controlled cortical impact model has been used extensively to study focal traumatic brain injury. Although the impact variables can be well defined, little is known about the extent and distribution of the biomechanical trauma as delivered to different brain regions. This knowledge however could be valuable for interpretation of experimental data (immunohistochemistry etc.), especially regarding the comparison of the regional biomechanical severity level to the regional magnitude of the trauma sequel under investigation. We tried to simulate brain tissue biomechanics of trauma with finite element modelling.

Methods

We used finite element (FE) analysis, based on high resolution T2-weighted MRI images of rat brain, to simulate displacement, mean stress, and shear stress of brain during impact. Young’s Modulus E, to describe tissue elasticity, was assigned to each FE in three scenarios: in a constant fashion (E=50kPa), or according to the MRI intensity in a linear (E=[10,100]kPa) and inverse-linear fashion(E=[100,10]kPa).

Results

Between the simulated 3 scenarios tissue displacement did not vary, however mean stress and shear stress were largely different. The linear scenario showed the most likely distribution of stresses in the tissue if general knowledge of a predominantely unilateral injury distribution is taken as reference.

Conclusions

FE analysis seems to be a suitable tool for biomechanical simulation of brain at the time of impact. However, this pilot study clearly shows, that modelling results largely depend on the method by which elastic tissue properties are assigned to the single finite elements. Regional tissue elasticity needs to be determined with a specific approach, e.g. by means of MRI elastography. Only then results can be as close to reality to be used for comparison to e.g. histopathological injury maps.