gms | German Medical Science

56. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie e. V. (DGNC)
3èmes journées françaises de Neurochirurgie (SFNC)

Deutsche Gesellschaft für Neurochirurgie e. V.
Société Française de Neurochirurgie

07. bis 11.05.2005, Strasbourg

"IOMaster 7D" – a new device for virtual neuroendoscopy

"IOMaster 7D" - ein Simulationssystem für virtuelle Neuroendoskopie

Meeting Abstract

  • corresponding author C. Trantakis - Klinik und Poliklinik für Neurochirurgie, Universität Leipzig
  • J. Meixensberger - Klinik und Poliklinik für Neurochirurgie, Universität Leipzig
  • G. Strauß - Klinik und Poliklinik für HNO-Krankheiten, Universität Leipzig
  • E. Strauß - Klinik und Poliklinik für Neurologie, Universität Leipzig
  • E. Nowatius - Zwonull Media GmbH, Leipzig
  • H. K. Cakmak - Institut für Angewandte Informatik, Research Center Karlsruhe
  • H. Maaß - Institut für Angewandte Informatik, Research Center Karlsruhe
  • U. Kühnapfel - Institut für Angewandte Informatik, Research Center Karlsruhe

Deutsche Gesellschaft für Neurochirurgie. Société Française de Neurochirurgie. 56. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie e.V. (DGNC), 3èmes journées françaises de Neurochirurgie (SFNC). Strasbourg, 07.-11.05.2005. Düsseldorf, Köln: German Medical Science; 2005. Doc09.05.-16.06

Die elektronische Version dieses Artikels ist vollständig und ist verfügbar unter: http://www.egms.de/de/meetings/dgnc2005/05dgnc0081.shtml

Veröffentlicht: 4. Mai 2005

© 2005 Trantakis et al.
Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielf&aauml;ltigt, verbreitet und &oauml;ffentlich zug&aauml;nglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.


Gliederung

Text

Objective

To create and evaluate a virtual reality simulation and training system “IOMaster 7D” with force feedback for ventriculostomy.

Methods

A VR model was generated based on a MRI dataset of a hydrocephalic brain. Different software modules were used for segmentation (VESUV), modelling (KisMo) and visualization (KISMET). The software was implemented on a WIN32 platform running Windows-NT, Win2000 or WinXP. A new force feedback system for capturing of both the endoscope guiding trocar and the instruments was developed. Real instruments (MINOP, Aesculap, Germany) were adapted to the simulator. The system was evaluated in 525 ventriculostomy procedures, carried out by 35 test persons with different experience to compare experts and inexperienced trainees regarding a possible learning effect.

Results

The “IOMaster 7D” consists of two coupled force feedback components. The first component captures the endoscope guiding trocar. This provides for a free placement of the trocar within the virtual scene, simulating various burr hole positions and trajectories to the target. The second force feedback component captures the acting instrument (balloon catheter, scissor, and forceps). An elastodynamic hydrocephalic configured ventricular system with realistic proportions and anatomical structures was designed. An interactive virtual real time interaction was implemented. First evaluations proved a reduction of the failure rate and the median procedure time in the inexperienced and the expert group as well. The economy of hand movement was improved, too. Experienced trainees achieved better results in all tasks than inexperienced test persons, indicating that the VR-system proves for virtual ventriculosomy that is very similar to real surgery.

Conclusions

VR systems can simulate surgical procedures in a very realistic manner and may open new perspectives for the neurosurgical apprenticeship. The training of potentially hazardous procedures can be uncoupled from the patient possibly resulting in a reduction of the risk of surgical morbidity. The integration of haptic information may increase the quality of VR training systems. The definition of no touch areas and continuous registration of both kinetic parameters, failure rate and the time course of the procedure provide objective criteria for the appreciation of a learning effect.