gms | German Medical Science

55. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie e. V. (DGNC)
1. Joint Meeting mit der Ungarischen Gesellschaft für Neurochirurgie

Deutsche Gesellschaft für Neurochirurgie (DGNC) e. V.

25. bis 28.04.2004, Köln

Magnetic fluid hyperthermia (MFH): A new therapeutic option in the treatment of glioblastomas (GB)

Magnetflüssigkeitshyperthermie (MFH): Eine neue Therapieoption in der Behandlung von Glioblastomen

Meeting Abstract

  • corresponding author Klaus Maier-Hauff - Neurochirurgische Abteilung, Bundeswehrkrankenhaus Berlin, Berlin
  • A. Jordan - Strahlenklinik und Poliklinik der Charité Berlin, Campus Virchow, Berlin
  • D. Nestler - Neurochirurgische Abteilung, Bundeswehrkrankenhaus Berlin, Berlin
  • R. Scholz - Strahlenklinik und Poliklinik der Charité Berlin, Campus Virchow, Berlin
  • R. Felix - Strahlenklinik und Poliklinik der Charité Berlin, Campus Virchow, Berlin

Deutsche Gesellschaft für Neurochirurgie. Ungarische Gesellschaft für Neurochirurgie. 55. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie e.V. (DGNC), 1. Joint Meeting mit der Ungarischen Gesellschaft für Neurochirurgie. Köln, 25.-28.04.2004. Düsseldorf, Köln: German Medical Science; 2004. DocP 06.60

Die elektronische Version dieses Artikels ist vollständig und ist verfügbar unter: http://www.egms.de/de/meetings/dgnc2004/04dgnc0343.shtml

Veröffentlicht: 23. April 2004

© 2004 Maier-Hauff et al.
Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.


Gliederung

Text

Objective

The survival of patients suffering from GB is predominantly limited by local progress in the primary tumor area. The new magnetic fluid hyperthermia (MFH) combined with radiotherapy (RT) has been developed for the local application in GB.

Methods

In a phase I/IIstudy with 15 patients (PTS) suffering from GB, the applicability and tolerance of MFH combined with external irradiation was evaluated. We present our up to date experience with 10 PTS. Depending on the tumour volume, all PTS received 2-6 navigated implantations of specific magnetic fluid (MF) with an overall volume of 2-4 ml in the tumour and the surrounding tissue. The MF consists of iron oxide nanoparticles coated with a MG-specific shell dispersed in water. When the particles are exposed to an externally applied AC magnetic field, intratumoral steady-state temperatures of 43-45 °C were achieved for 60 minutes. The target temperature was measured continuously online by a 0,5 mm fibre optic invasive thermometry and controlled by the fields strength of the AC magnetic field applicator. Four days after surgery irradiation was applied with 2 Gy / fraction 5 times a week plus 2 sessions of hyperthermia per week over 3 weeks. Because tumour power absorption was highly reproducible in each session only the first four MFH treatments required thermometry. Further MFH applications were completely non-invasive.

Results

All PTS tolerated the MFH without side-effects. In-vivo measured temperatures of 44 °C were highly reproducible in the target volume. In five cases MFH has been completed. During the two months follow-up, none of these PTS show tumour progression or recurrent tumour growth.

Conclusions

Thermal treatment with MFH was tolerated well and has been identified as a useful method of achieving tumour temperatures of 44-45 °C for at least 60 minutes. MFH has a radio-sensitising effect in combination with an adjuvant RT. This study shows that the neuro-navigated MF-implantation, the AC magnetic field implantation and intratumoral heating is highly applicable, reproducible and well tolerated.