gms | German Medical Science

128. Kongress der Deutschen Gesellschaft für Chirurgie

Deutsche Gesellschaft für Chirurgie

03.05. - 06.05.2011, München

Bipolar radiofrequency-induced thermofusion of intestinal anastomoses – ex vivo evaluation of a new anastomosis technique

Meeting Abstract

  • Christoph Holmer - Charité - Campus Benjamin Franklin, Chirurgische Klinik I, Berlin
  • Hanno Winter - TU Berlin - Fachgebiet Medizintechnik, Institut für Konstruktion, Mikro- und Medizintechnik, Berlin
  • Gerd Lindner - TU-Berlin - Fachgebiet Medizinische Biotechnologie , Institut für Biotechnologie, Berlin
  • Roland Lauster - TU-Berlin - Fachgebiet Medizinische Biotechnologie , Institut für Biotechnologie, Berlin
  • Marc Kraft - TU Berlin - Fachgebiet Medizintechnik, Institut für Konstruktion, Mikro- und Medizintechnik, Berlin
  • Heinz J. Buhr - Charité - Campus Benjamin Franklin, Chirurgische Klinik I, Berlin
  • Jörg-Peter Ritz - Charité Campus Benjamin Franklin, Klinik für Allgemein-, Gefäß- und Thoraxchirurgie, Berlin

Deutsche Gesellschaft für Chirurgie. 128. Kongress der Deutschen Gesellschaft für Chirurgie. München, 03.-06.05.2011. Düsseldorf: German Medical Science GMS Publishing House; 2011. Doc11dgch207

doi: 10.3205/11dgch207, urn:nbn:de:0183-11dgch2076

Veröffentlicht: 20. Mai 2011

© 2011 Holmer et al.
Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.


Gliederung

Text

Introduction: Vessel sealing has been well-established to seal and transect vessels in surgical practice in recent years. Since this technology depends on fusion of collagen fibres which are abundantly present in the intestinal wall, it should also be possible to create intestinal anastomoses by thermofusion. Bipolar radiofrequency-induced thermofusion (BIRTH) of intestinal tissue might replace traditionally used staples or sutures. The aim of this study was to evaluate the possibility to fuse intestinal tissue ex vivo using bipolar radiofrequency-induced thermofusion.

Materials and methods: An experimental setup for a temperature-controlled bipolar radiofrequency-induced thermofusion of porcine intestinal tissue was developed. Overall, twenty-four colon samples were harvested and then anastomosed altering compressive pressure to explore its influence on anastomotic bursting pressure during radiofrequency-induced anastomotic fusion. For comparison, mechanical stapler anastomosis of colonic samples identical to those used for fusion experiments were prepared, and burst pressure was measured.

Results: All 24 thermofused colonic anastomoses were primarily tight and leakage-proof. The anastomotic bursting strength depends on the compressive pressure applied to the colonic fusion site (Figure 1 [Fig. 1]). An optimal interval of compressive pressure (1125 N/mm2) in respect of a high amount of burst pressure was detected (41.0 mmHg). The mean bursting pressure for mechanical stapler anastomosis was 60.7 mmHg and did not differ compared to the thermofusion (p = 0.15).

Conclusion: These results confirm the feasibility to create experimental intestinal anastomoses using bipolar radiofrequency-induced thermofusion. The stability of the induced thermofusion showed no difference compared to conventional stapler anastomosis. The bipolar radiofrequency-induced thermofusion of intestinal tissue represents an innovative approach to achieving gastrointestinal anastomoses.